A Computerized Boundary Element Algorithm for Modeling and Optimization of Complex Magneto-Thermoelastic Problems in MFGA Structures

Mohamed Abdelsabour Fahmy¹,²*, Saleh M. Al-Harbi¹, Badr Hamedy Al-Harbi¹ and Alanod M. Sibih¹

¹Department of Mathematics, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia.
²Department of Basic Sciences, Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JERR/2018/v3i216872

(1) Dr. Anuj Kumar Goel, Associate Professor, Maharishi Markandeshwar University, (Deemed to be University), Ambala, India.
(2) Francisco Bulnes, Technological Institute of High Studies of Chalco, Mexico.
(2) Jungki Lee, Hongik University, South Korea.
Complete Peer review History: http://www.sciencedomain.org/review-history/28098

ABSTRACT

Aims: The aim of this article is to propose a boundary integral equation algorithm for modeling and optimization of magneto-thermoelastic problems in multilayered functionally graded anisotropic (MFGA) structures.

Study Design: Original research paper.

Place and Duration of Study: Jamoum laboratory, January 2018.

Methodology: a new dual reciprocity boundary element algorithm was implemented for solving the governing equations of magneto-thermoelastic problems in MFGA structures.

Results: A numerical results demonstrate validity, accuracy, and efficiency of the presented technique.

Conclusion: Our results thus confirm the validity, accuracy, and efficiency of the proposed technique. It is noted that the obtained dual reciprocity boundary element method (DRBEM) results are more accurate than the FEM results, the DRBEM is more efficient and easy to use than FEM because it only needs the boundary of the domain needs to be discretized.

*Corresponding author: Email: maselim@uqu.edu.sa;
Keywords: Predictor-corrector; shape optimization; magneto-thermoelasticity; functionally graded anisotropic structures; dual reciprocity boundary element method.

1. INTRODUCTION

An understanding of behaviour of functionally graded anisotropic magneto-thermoelastic materials has great practical applications in applied sciences and engineering. In recent years, many researchers discussed the behavior of MFGA structures. With the new advances in computer hardware and software, it is now possible to solve complex magneto-thermoelastic problems by using the DRBEM, which proposed by Nardini and Brebbia [1]. The interested readers can find more details in the following references [2-6].

The aim of this article is to propose a new DRBEM algorithm for solving the governing equations of magneto-thermoelastic problems in MFGA structures. The obtained numerical results demonstrate validity, accuracy, and efficiency of the proposed technique.

2. FORMULATION OF THE PROBLEM

Consider a MFGA structure occupies the region \(R = ((x, y, z): 0 < x < h, 0 < y < b, 0 < z < a) \). At each and every point on the boundary \(\Gamma \), the temperature and displacement are suitably specified.

According to Green and Naghdi theory, the governing equations of MFGA structures for the \(i \)th layer, can be expressed as [7-10]:

\[
\begin{align*}
\sigma_{ab,i} + \tau_{ab,i} &= \rho_i(x + 1)^m \ddot{u}_{ab}^i \\
\sigma_{ab} &= (x + 1)^m \left[C_{abfg}^i u_{fg}^i - \beta_{ab}(T^i - T_0) + \tau_i \ddot{T}^i \right] \\
\tau_{ab} &= \mu_i(x + 1)^m \left(\tilde{h}_a h_b + \tilde{h}_b h_a - \delta_{ba}(\tilde{h}_f h_f) \right) \\
\left[k_{ab}^i + k_{ab} \frac{\partial}{\partial x} \right] \tau_{ab}^i + \rho_i \ddot{x} &= \beta_{ab} T_0 \ddot{u}_{ab}^i + \rho_i c_i(x + 1)^m \ddot{T}^i
\end{align*}
\]

where \(\sigma_{ab} \), \(\tau_{ab} \), \(\ddot{u}_{ab}^i \) and \(\ddot{T}^i \) are respectively mechanical stress, \(\tau_{ab} \) Maxwell’s stress, displacement and temperature, \(T_0, C_{abfg}^i, \beta_{ab}, \mu_i, \tilde{h}_a, k_{ab}^i, k_{ab}, \rho_i \) and \(\tau_i \) are respectively reference temperature, constant elastic moduli, stress-temperature coefficients, magnetic permeability, perturbed magnetic field, thermal conductivity coefficients, new material coefficients associated with the GN theories, density and time, \(c_i \) is the specific heat capacity, \(\tau_i \) is the relaxation times, \(\ddot{x} \) is the heat source, \(i = 1, 2, ..., n - 1 \) represents the parameters in multilayered plate, respectively, and \(f(x) \) is a given nondimensional function of space variable \(x \). We take \(f(x) = (x + 1)^m \), where \(m \) is a dimensionless constant.

3. DRBEM IMPLEMENTATION

Using the same technique of Fahmy [11-13] for the current problem and implementing the DRBEM, we can write the boundary integral representation formula of coupled thermoelasticity as follows:

\[
\begin{align*}
U_{j}^i(\xi) &= \int_{\Gamma} \left(\left(U_{i}^j T_{A}^i - T_{A}^j U_{i}^i \right) dC \right. \\
&\left. + \sum_{q=1}^{F} \left(U_{i}^{q} \right) \int_{\Gamma} \left(\left(T_{A}^{q} U_{i}^{q} - U_{i}^{q} T_{A}^i \right) dC \right) \right) \alpha_{q}
\end{align*}
\]

According to Fahmy [14], the DRBEM equation (5) can be written as:

\[
\zeta U - \eta \ddot{T} = (\zeta U - \eta \ddot{T}) \alpha
\]

An implicit-implicit staggered algorithm based on DRBEM was implemented for for solving the governing equations which can be written using (6) as follows:

\[
\bar{M} \ddot{U}^i + \bar{T}^i U^i + \bar{R} U^i = \bar{Q}^i
\]

\[
\bar{X} \ddot{T}^i + \bar{A} \ddot{T}^i + \bar{B} T^i = \bar{Z} \ddot{U}^i + \bar{R}
\]

where the matrices in (7) and (8) are as follows:
Substituting from Eq. (13) into Eq. (12), we derive
\[\mathcal{M} = \mathcal{V}(\mathcal{J} + \delta_{AF}), \quad \mathcal{F} = \mathcal{V} \Gamma_{AF}, \]
\[\mathcal{R} = -\zeta + V(B)^{-1} + \psi, \quad \widetilde{Q} = -\eta \mathcal{T} + V \mathcal{S}^0, \quad \mathcal{X} = -\rho \mathcal{F}(x + 1)^m, \]
\[\mathcal{A} = k^i_{ab} \frac{\partial}{\partial x_a} \frac{\partial}{\partial x_b}, \quad \mathcal{B} = k^i_{ab} \frac{\partial}{\partial x_a} \frac{\partial}{\partial x_b}, \quad \mathcal{Z} = \beta^i_{ab} \Gamma_{0}. \]

From Eq. (11) we have
\[\mathcal{I} = \mathcal{M} \xi + \mathcal{V} \gamma + \mathcal{B} \xi + \mathcal{Z}, \]
\[\mathcal{I} = \mathcal{M} \xi + \mathcal{V} \gamma + \mathcal{B} \xi + \mathcal{Z}. \]

Integrating Eq. (7) and using Eq. (9), we get
\[\mathcal{I} i_n + \mathcal{B} i_n + \mathcal{Z} = \mathcal{M} i_n + \mathcal{V} \gamma + \mathcal{B} \xi + \mathcal{Z}. \]

Equations (7) and (8) yield the following system [15]:
\[\mathcal{M} \xi_{i+1} + \mathcal{R} \xi_{i+1} + \mathcal{B} \xi_{i+1} = \mathcal{Q}^p_{i+1} \]
\[\mathcal{X} \xi_{i+1} + \mathcal{A} \xi_{i+1} + \mathcal{B} \xi_{i+1} = \mathcal{Z} \xi_{i+1} + \mathcal{M} \xi_{i+1} + \mathcal{Z} \xi_{i+1} \] (9)

where \(\mathcal{Q}^p_{i+1} = \eta \mathcal{T}^p_{i+1} + V \mathcal{S}^0 \) and \(\mathcal{T}^p_{i+1} \) is the predicted temperature.

Integrating Eq. (7) and using Eq. (9), we get
\[\xi_{i+1} = \xi_n + \Delta \xi \left(\xi_{i+1} + \xi_n \right) \]
\[= \xi_n + \Delta \xi \left(\xi_{i+1} + \mathcal{M}^{-1} \left(\mathcal{Q}^p_{i+1} - \mathcal{R} \xi_{i+1} \right) \right) \] (11)

\[\xi_{i+1} = \xi_n + \Delta \xi \left(\xi_{i+1} + \mathcal{M}^{-1} \left(\mathcal{Q}^p_{i+1} - \mathcal{R} \xi_{i+1} \right) \right) \] (12)

From Eq. (11) we have
\[\xi_{i+1} = \mathcal{Y}^{-1} \left[\xi_n + \Delta \xi \left(\xi_{i+1} + \mathcal{M}^{-1} \left(\mathcal{Q}^p_{i+1} - \mathcal{R} \xi_{i+1} \right) \right) \right] \] (13)

where \(\mathcal{Y} = \left(I + \frac{\Delta \xi}{2} \mathcal{M}^{-1} \right) \)

Substituting from Eq. (13) into Eq. (12), we derive
\[\xi_{i+1} = \xi_n + \Delta \xi \left(\xi_{i+1} + \mathcal{M}^{-1} \left(\mathcal{Q}^p_{i+1} - \mathcal{R} \xi_{i+1} \right) \right) \] (14)

Substituting \(\xi_{i+1} \) from Eq. (13) into Eq. (9) we obtain
\[\xi_{i+1} = \mathcal{M}^{-1} \left[\mathcal{Q}^p_{i+1} - \mathcal{R} \mathcal{Y}^{-1} \left[\xi_n + \Delta \xi \left(\xi_{i+1} + \mathcal{M}^{-1} \left(\mathcal{Q}^p_{i+1} - \mathcal{R} \xi_{i+1} \right) \right) \right] - \mathcal{R} \xi_{i+1} \right] \] (15)

Integrating Eq. (8) and using Eq. (10) we have
\[\mathcal{T}^i_{i+1} = \mathcal{T}^i_n + \Delta \mathcal{T}^i \] (16)
$$T_{n+1}^i = T_n^i + \frac{\Delta r}{2} (\tilde{T}_{n+1}^i + \tilde{T}_n^i)$$

$$= T_n^i + \Delta r \tilde{T}_n^i + \frac{\Delta r^2}{4} (\tilde{T}_{n+1}^i + \tilde{T}_n^i)$$

$$= T_n^i + \Delta r \tilde{T}_n^i + \frac{\Delta r^2}{4} (\tilde{T}_{n+1}^i + \tilde{T}_n^i) (\tilde{T}_{n+1}^i + \tilde{T}_n^i)$$

From Eq. (16) we get

$$\tilde{T}_{n+1}^i = Y^{-1} \left[\tilde{T}_n^i + \frac{\Delta r}{2} \left(\tilde{X}^{-1} [\tilde{Z} \tilde{U}_{n+1}^i + \tilde{r} - \tilde{B} \tilde{T}_{n+1}^i] + \tilde{T}_n^i \right) \right]$$

where $Y = \left(I + \frac{1}{2} \tilde{A} \Delta r \tilde{X}^{-1} \right)$

Substituting from Eq. (18) into Eq. (17), we have

$$T_{n+1}^i = T_n^i + \Delta r \tilde{T}_n^i + \frac{\Delta r^2}{4} \left(\tilde{T}_{n+1}^i + \tilde{T}_n^i \right)$$

$$- \tilde{A} \left(Y^{-1} \left[\tilde{T}_n^i + \frac{\Delta r}{2} \left(\tilde{X}^{-1} [\tilde{Z} \tilde{U}_{n+1}^i + \tilde{r} - \tilde{B} \tilde{T}_{n+1}^i] + \tilde{T}_n^i \right) \right] \right)$$

$$= T_n^i + \Delta r \tilde{T}_n^i + \frac{\Delta r^2}{4} \left(\tilde{T}_{n+1}^i + \tilde{T}_n^i \right)$$

Substituting \tilde{T}_{n+1}^i from Eq. (18) into Eq. (10) we obtain

$$\tilde{T}_{n+1}^i = \tilde{X}^{-1} [\tilde{Z} \tilde{U}_{n+1}^i + \tilde{r} - \tilde{B} \tilde{T}_{n+1}^i]$$

$$- \tilde{A} \left(Y^{-1} \left[\tilde{T}_n^i + \frac{\Delta r}{2} \left(\tilde{X}^{-1} [\tilde{Z} \tilde{U}_{n+1}^i + \tilde{r} - \tilde{B} \tilde{T}_{n+1}^i] + \tilde{T}_n^i \right) \right] \right)$$

Using the algorithm of Fahmy [16-22], we have the temperature and the displacements.

4. SHAPE DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION

Thus, the design sensitivities with respect to the design variables x_h for the displacement and temperature which describe the structural response are performed by implicit differentiation of equations (9) and (10), respectively.

Let R be a region with boundary \mathcal{C} and continuous functions m and ω satisfy

$$\int_R \left(\frac{\partial \omega}{\partial x_1} - \frac{\partial m}{\partial x_2} \right) dx_1 dx_2 = \int_\mathcal{C} \left(m dx_1 + \omega dx_2 \right)$$

The area $A = \frac{1}{2} \int_{\mathcal{C}} r^2 d\theta = \int_R dx_1 dx_2$ of the domain R can be written over the boundary using the Green's theorem as [16-18]

$$A = \frac{1}{2} \int_\mathcal{C} (x_1 dx_2 - x_2 dx_1)$$

By discretizing the boundary of the structure into Q quadratic boundary elements, we have the following relation at ith element

$$x_m(\xi) = N(\xi)x_c^i$$

Also, the area can be expressed as follows

$$A = \frac{1}{2} \sum_{h=1}^Q \int_{-1}^1 \left[x_1(\xi)n_1 + x_2(\xi)n_2 \right] J(\xi) d\xi$$
where \(n_1 \) and \(n_2 \) can be written in terms of the Jacobian matrix of the transformation \(J(\xi) \) as

\[
n_1 = \frac{dx_2}{dA} - \frac{dx_2/d\xi}{dA/d\xi} \frac{dx_2/d\xi}{J(\xi)} \quad \text{(25)}
\]

\[
n_2 = -\frac{dx_1}{dA} = -\frac{dx_1/d\xi}{dA/d\xi} = -\frac{dx_1/d\xi}{J(\xi)} \quad \text{(26)}
\]

Substitution of equations (25) and (26) into equation (24) yields

\[
\bar{A} = \frac{1}{2} \sum_{p=1}^{q} \int_{-1}^{1} \left[x_1(\xi) \frac{dx_2}{d\xi} - x_2(\xi) \frac{dx_1}{d\xi} \right] d\xi \quad \text{(27)}
\]

By differentiating (27) taking into consideration that

\[
\frac{\partial}{\partial x_h} \left(\frac{dx_2(\xi)}{d\xi} \right) = 0 \quad \text{(28)}
\]

and

\[
\frac{\partial}{\partial x_h} (x_2(\xi)) = 0 \quad \text{(29)}
\]

Therefore

\[
\frac{\partial \bar{A}}{\partial x_h} = \frac{1}{2} \sum_{p=1}^{q} \int_{-1}^{1} \left[\frac{dx_1(\xi)}{d\xi} \frac{dx_2}{d\xi} - x_2(\xi) \frac{dx_1}{d\xi} \right] d\xi \quad \text{(30)}
\]

If \(x_h \) is the \(x_2 \) coordinate of a movable node, then

\[
\frac{\partial}{\partial x_h} \left(\frac{dx_1(\xi)}{d\xi} \right) = 0 \quad \text{(31)}
\]

and

\[
\frac{\partial}{\partial x_h} (x_1(\xi)) = 0 \quad \text{(32)}
\]

Therefore

\[
\frac{\partial \bar{A}}{\partial x_h} = \frac{1}{2} \sum_{p=1}^{q} \int_{-1}^{1} \left[x_1(\xi) \frac{\partial}{\partial x_h} \left(\frac{dx_2}{d\xi} \right) - \frac{dx_2(\xi)}{d\xi} \frac{dx_1}{d\xi} \right] d\xi \quad \text{(33)}
\]

where weight minimization is equivalent to area minimization.

Now, we consider the following minimization problem

Minimize \(\bar{A}(x_h) \) \quad \text{(34)}

Subject to \(x_m(x_h) \leq 0, \ m = 1, ..., M \) \quad \text{(35)}

\[
x_h^L \leq x_h \leq x_h^U \quad \text{(36)}
\]

where \(x_h = [x_1, x_2, ..., x_L]^T \).

The feasible direction method (FDM) can be successfully applied for solving the current optimization problem using the following iteration process:
\[x_h = x_{h-1} + s_h d_h \]

(37)

Under the following condition

\[\bar{A}(x_h) - \bar{A}(x_{h-1}) \leq \varepsilon \]

(38)

where \(h, \varepsilon, s_h \) and \(d_h \) are respectively iteration number, predefined tolerance, line step parameter, search direction \(d_h \) which can be defined as

\[d_h = -H^h \nabla \bar{A}(x_h) \]

(39)

where the inverse Hessian matrix can be approximated in terms of the identity matrix \(I \) by

\[H^{h+1} = \left[I - \frac{P^h Q^h}{(P^h)^T Q^h}\right] H^h \left[I - \frac{Q^h (P^h)^T}{(P^h)^T Q^h}\right] + \frac{P^h (Q^h)^T}{(P^h)^T Q^h} \]

(40)

In which

\[p^h = x_{h+1} - x_h, \quad Q^h = \nabla \bar{A}(x_{h+1}) - \nabla \bar{A}(x_h), \quad H^0 = I \]

Using FDM, we have

\[\nabla \bar{A}(x_h) d \leq 0 \]

(41)

and

\[\nabla \chi_m(x_h) d \leq 0 \]

(42)

Now, we want to solve the following search direction problem [19]

Maximize \(\mathcal{B} \)

Subject to

\[d^T \nabla \chi_m(x_h) + \theta_m \mathcal{B} \leq 0 \]

(43)

\[d^T \nabla \bar{A}(x_h) + \mathcal{B} \leq 0 \]

(44)

\[-1 \leq d \leq 1 \]

(45)

where \(\theta_m \) is the push-off factor which can be written as

\[\theta_m = \left[1 - \frac{\chi_m(x_h)}{\varepsilon}\right]^2 \theta_0 \]

(46)

where \(\varepsilon \) and \(\theta_0 \) are constants.

We will use the preceding formulation when the design is inside the feasible domain. But when the design is outside the feasible domain, we will solve the following search direction problem

Maximize \(\nabla \bar{A}(x_h). d + \Phi \mathcal{B} \)

Subject to

\[\nabla \chi_m(x_h). d + \theta_m \mathcal{B} \leq 0, \ m \in J \]

(47)

\[d^T. d \leq 1 \]

(48)

where \(J \) and \(\Phi \) are respectively potential constraint set and weighting factor.
5. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the numerical results of the current study, the following physical constants for material “A” are as follows:

Elasticity tensor

\[
C_{pjk} = \begin{bmatrix}
430.1 & 130.4 & 18.2 & 0 & 0 & 201.3 \\
130.4 & 116.7 & 21.0 & 0 & 0 & 70.1 \\
18.2 & 21.0 & 73.6 & 0 & 0 & 2.4 \\
0 & 0 & 0 & 19.8 & -8.0 & 0 \\
0 & 0 & 0 & -8.0 & 29.1 & 0 \\
201.3 & 70.1 & 2.4 & 0 & 0 & 147.3
\end{bmatrix} \text{ GPa}
\]

Mechanical temperature coefficient

\[
\beta_{p} = \begin{bmatrix}
1.01 & 2.00 & 0 \\
2.00 & 1.48 & 0 \\
0 & 0 & 7.52
\end{bmatrix} \cdot 10^6 \text{ N/Km}^2
\]

Tensor of thermal conductivity

\[
k_{p} = \begin{bmatrix}
5.2 & 0 & 0 \\
0 & 7.6 & 0 \\
0 & 0 & 38.3
\end{bmatrix} \text{ W/Km}
\]

Mass density \(\rho = 7820 \text{ kg/m}^3 \) and heat capacity \(c = 461 \text{ J/kg K} \).

A prismatic material is taken as material B in the numerical calculations with the following physical constants:

Elasticity tensor

\[
C_{pjk} = \begin{bmatrix}
60.23 & 18.67 & 18.96 & -7.69 & 15.60 & -25.28 \\
18.96 & 9.36 & 47.04 & -8.82 & 15.28 & -8.31 \\
-7.69 & -3.74 & -8.82 & 10.18 & -9.54 & 5.69 \\
15.60 & 4.21 & 15.28 & -9.54 & 21.19 & -8.54 \\
-25.28 & -8.47 & -8.31 & 5.69 & -8.54 & 20.75
\end{bmatrix} \text{ GPa}
\]

Mechanical temperature coefficient

\[
\beta_{p} = \begin{bmatrix}
0.002 & 0.02 & 0.03 \\
0.02 & 0.004 & 0.04 \\
0.03 & 0.04 & 0.05
\end{bmatrix} \cdot 10^6 \text{ N/Km}^2
\]

Tensor of thermal conductivity

\[
k_{p} = \begin{bmatrix}
0.8 & 0.1 & 0.15 \\
0.1 & 0.9 & 0.12 \\
0.15 & 0.12 & 0.7
\end{bmatrix} \text{ W/Km}
\]

Mass density \(\rho = 1600 \text{ kg/m}^3 \) and heat capacity \(c = 0.1 \text{ J/kg K} \).

Also, a monoclinic North Sea sandstone reservoir rock is taken as material C in the numerical computations with the following physical constants:

Elasticity tensor
\[
C_{ijkl} = \begin{bmatrix}
17.77 & 3.78 & 3.76 & 0.24 & 0.28 & 0.03 \\
3.78 & 19.45 & 4.13 & 0 & 0 & 1.13 \\
3.76 & 4.13 & 21.79 & 0 & 0 & 0.38 \\
0 & 0 & 0 & 8.30 & 0.66 & 0 \\
0 & 0 & 0 & 0.66 & 7.62 & 0 \\
0.03 & 1.13 & 0.38 & 0 & 0 & 7.77
\end{bmatrix} \text{ GPa}
\]

Mechanical temperature coefficient

\[
\beta_p = \begin{bmatrix}
0.001 & 0.02 & 0 \\
0.02 & 0.006 & 0 \\
0.001 & 0.006 & 0.05
\end{bmatrix} \cdot 10^6 \text{ N/Km}^2
\]

Tensor of thermal conductivity

\[
k_p = \begin{bmatrix}
1 & 0.1 & 0.2 \\
0.1 & 1.1 & 0.15 \\
0.2 & 0.15 & 0.9
\end{bmatrix} \text{ W/Km}
\]

Mass density \(\rho = 2216 \text{ kg/m}^3 \) and heat capacity \(c = 0.1 \text{ J/kg K} \).

Table 1. Optimization analysis for considered materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Iterations</th>
<th>Percentage change between final and initial value</th>
<th>Maximum stress</th>
<th>Reduction of compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>65%</td>
<td>0.411</td>
<td>92.40</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>65%</td>
<td>0.390</td>
<td>90.87</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>73%</td>
<td>0.223</td>
<td>91.10</td>
</tr>
</tbody>
</table>

Table 2. Comparison of computer resources needed for FEM and DRBEM modelling of the right half of the link plate design

<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th>DRBEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of elements</td>
<td>12980</td>
<td>48</td>
</tr>
<tr>
<td>CPU-Time [min.]</td>
<td>190</td>
<td>3</td>
</tr>
<tr>
<td>Memory [Mbyte]</td>
<td>140</td>
<td>0.6</td>
</tr>
<tr>
<td>Disc space [Mbyte]</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Accuracy of results [%]</td>
<td>2.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Fig. 1. a) Geometry, b) Boundary element model for the link plate.
Fig. 2. Optimum shape design for the link plate.

Fig. 3. Compliance iteration history for the link plate.

Fig. 4. Variation of the temperature T sensitivity with time τ.

For the purpose of numerical calculations of materials A, B and C, we considered the following constants

\[H_0 = 1000000 \text{ Oersted}, \mu = 0.5 \text{ Gauss/Oersted}, \tau_0 = 0.5, m = 0.5, \Delta \tau = 0.0001, Q_0 = 0.5, \nu = 1. \]

It can be noticed from numerical results that the DRBEM results are in very good agreement with those obtained using the finite element method (FEM) of Gao and Yao [23]. The right half of the link plate shown in Fig. 1a and design variables shown in Fig. 1b are considered. The optimum shapes of the considered structure for selected anisotropic materials produced from the current study are shown in Fig. 2. It can be seen that the weight and the maximum stress have increased. Fig. 3 shows the iteration history for elastic compliance of the link plate for selected materials A, B and C. It can be seen that the weight and the maximum stress of the link plate have been decreased (see Table 1). Figs. 4 and 5 show the sensitivities of the displacement distributions. Also, Fig. 6 shows the sensitivity of the temperature distribution to demonstrate the accuracy of the current technique technique (see Table 2). For further finite difference method details, we refer the reader to many researchers [24-29]. Also, for more boundary element method details we refer the reader to many researchers [30-55].

6. CONCLUSION

Our results thus confirm the validity, accuracy, and efficiency of the proposed technique. It is noted that the obtained dual reciprocity boundary element method (DRBEM) results are more accurate than the FEM results, the DRBEM is more efficient and easy to use than FEM because it only needs the boundary of the domain needs to be discretized.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

20. Fahmy MA. Shape design sensitivity and optimization of anisotropic functionally graded smart structures using bicubic B-splines DRBEM. Engineering Analysis with Boundary Elements. 2018;87:27-35.
21. Fahmy MA. Modeling and optimization of anisotropic viscoelastic porous structures

43. Fahmy MA, Saleh Manea Al-Harbi, Badr Hamedy Al-Harbi. Implicit time-stepping DRBEM for design sensitivity analysis of

