Chaos Control of a Resource-Economic-Pollution Dynamic System

Jiuli Yin¹, Jing Huang¹ and Xinghua Fan¹

¹Faulty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JERR/2019/v7i416974

Editor(s):
(1) Dr. Heba Abdallah Mohamed Abdallah, Associate Professor, Department of Chemical Engineering, Engineering Research Division, National Research Centre, Egypt.

Reviewer(s):
(1) Diab Zouhair, Université Larbi Tébessi, Tébessa - Algérie, Algeria.
(2) Godwe Emile, University of Maroua, Cameroon.

Complete Peer review History: http://www.sdiarticle4.com/review-history/51876

Received: 26 July 2019
Accepted: 01 October 2019

Original Research Article

Abstract

How to control chaos in the economic system has aroused the interest of researchers. We research the chaos control in a new Resource-Economic-Pollution system by time-delayed feedback control. By determining the appropriate range of time delay \(\tau \) and feedback strength \(k \), the chaotic phenomena of the system are controlled. We verify the linear stability and the existence of Hopf bifurcation of the system. Numerical simulations show that chaos control can eliminate the chaotic behavior of the system and stabilize the system at the equilibrium point. When the time lag term is in a certain interval, the chaotic phenomenon of the system will disappear and the system will be controlled in a stable state. In practice, due to capacity and financial constraints, the firm or the government often restrains output through many methods to confine the range of fluctuations in these variables. This shows that the government or corporate decision makers have often used this approach consciously or unconsciously to promote steady economic growth.

Keywords: Resource-economic-pollution dynamic system; Chaos control; Time-delayed feedback control; Hopf bifurcation.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

*Corresponding author: E-mail: fan131@ujs.edu.cn;
1 INTRODUCTION

The influence of chaos on modern science is not limited to the natural sciences, but also involves economics, sociology, biology, and so on [1, 2, 3]. However, the appearance of chaos often leads to abnormal behavior of the system. Economic systems are nonlinear in nature. In general, chaotic phenomena must arise from nonlinear systems [4]. Chaos may lead to economic instability, economic crisis in serious cases, and even threaten the security and stability of the country. Thence how to control the chaos has caused widespread concern among scholars [5, 6, 7, 8].

Recently, researchers have become increasingly interested in controlling the chaos in economic systems by different methods [9, 10, 11, 12, 13]. Ott, Grebogi and Yorke [14] proposed the OGY control method, which was successfully applied to chaos control in some economic systems [15, 16]. Kass [33] linked the chaotic target method with the OGY method to stabilize chaos in dynamic macroeconomic models [17]. These methods need accurate system information prior to implementation. Therefore, to make an accurate decision, the government must have a large amount of relevant economic data, which is impractical or very expensive [18]. Pyragas [19] proposed a method for chaotic control using delayed feedback signals. A lot of researches have been carried out on time-delay control [20, 21, 22, 23, 24, 25]. Compared with other methods, time-delayed control is a simple and effective method to control chaos in economic models. Because it does not require any system information [26]. Thus, we adopt the time-delayed feedback control method in the present paper.

In this paper, we use the time-delayed feedback control to research the REP system [27]. Because unstable fluctuations are always regarded as unfavorable phenomena in traditional economics [18], we added time delays for new economy scale. Under appropriate feedback strength, the economy scale chaotic system is controlled to a steady state. The local stability of the system and the existence of Hopf bifurcation are studied by theoretical analysis. It is proved that the chaos disappears when the time delay reaches a certain value.

This paper is organized as follows. In Section 2, based on the delayed feedback control method, the stability and the period of one of the equilibrium points are analyzed. To verify the theoretical analysis, Section 3 gives numerical simulations. Finally, a conclusion is given in Section 4.

2 ESTABLISHMENT OF THE MODEL

Yin et al. discovered a novel chaotic system:

\[
\begin{align*}
\frac{dx}{dt} & = a_1 x + a_2 y - a_3 y z - a_4 x, \\
\frac{dy}{dt} & = b_1 x (1 - \frac{x}{M}) - b_2 y - b_3 z + b_4 (z - x), \\
\frac{dz}{dt} & = c_1 x y - c_2 z + c_3 (y - x),
\end{align*}
\]

where \(x(t) \) is the total resource consumed in a region during a given period, \(y(t) \), of economy scale, \(z(t) \), of pollution [27]. \(a_i, b_i, c_i, (i=1,...,3) \) are positive system parameters, and \(M \) represents the maximum value of resource consumption.

We control the chaotic system (2.1) with the time-delayed feedback strategy. We apply the time-delayed force \(k[y(t) - y(t - \tau)] \) to the second equation of the system (2.1), where \(\tau \) is a time-delay term, satisfying \(\tau > 0 \) and \(k \in R \). The magnitude of the \(\tau \) value is the length of the reaction time, \(k \) is the feedback gain. Since the output in the previous period will affect the current economic growth rate, the control term \(k[y(t) - y(t - \tau)] \) represents the production within a certain period of time. Then the system (2.1) is described as:

\[
\begin{align*}
\dot{x} & = a_1 x + a_2 y - a_3 y z - a_4 x, \\
\dot{y} & = b_1 x (1 - \frac{x}{M}) - b_2 y - b_3 z + b_4 (z - x) + k[y(t) - y(t - \tau)], \\
\dot{z} & = c_1 x y - c_2 z + c_3 (y - x),
\end{align*}
\]
By the linear transform, system (2.2) is changed to:

\[
\begin{align*}
\dot{x} &= a_{11}x + a_{12}y + a_{13}z, \\
\dot{y} &= a_{21}x + a_{22}y + a_{23}z + a_{24}(t - \tau), \\
\dot{z} &= a_{31}x + a_{32}y + a_{33}z,
\end{align*}
\]

(2.3)

where

\[
\begin{align*}
a_{11} &= a_1 - a_4, a_{12} &= a_2 - a_3 z^*, a_{13} = -a_3 y^*, a_{21} = b_1 - b_4 - 2b_2 x^*/M, \\
a_{22} &= -b_2 + k, a_{23} &= b_4 - b_3, a_{24} = -k, a_{31} &= c_1 y^* - c_3, a_{32} = c_1 x^* + c_3, a_{33} = -c_2.
\end{align*}
\]

The characteristic equation system (2.3) is

\[
\lambda^3 + A_2 \lambda^2 + A_1 \lambda + A_0 + (B_2 \lambda^2 + B_1 \lambda + B_0)e^{-\lambda \tau} = 0,
\]

(2.4)

where \(A_2 = -a_{11} - a_{22} - a_{33}, A_1 = a_{12}a_{33} + a_{13}a_{22} + a_{11}a_{23} - a_{12}a_{21} - a_{13}a_{32}, A_0 = a_{11}a_{32}a_{33} + a_{12}a_{13}a_{33} + a_{13}a_{22}a_{33} - a_{11}a_{23}a_{33} - a_{13}a_{32}a_{33} - a_{12}a_{32}a_{33}, B_2 = -a_{24}, B_1 = a_{11}a_{32} + a_{24}a_{33}, B_0 = a_{11}a_{24}a_{33} - a_{12}a_{24}a_{33}.\) In order to analyze the distribution of roots of the transcendental equation (2.4), we introduce the following lemma.

Lemma 1. [28] **Consider the transcendental equation:**

\[
P(\lambda, e^{-\lambda \tau_1}, \ldots, e^{-\lambda \tau_m}) = \lambda^n + p_1^{(0)} \lambda^{n-1} + \cdots + p_{n-1}^{(0)} + [p_1^{(1)} \lambda^{n-1} + \cdots + p_{n-1}^{(1)}] + [p_1^{(m)} \lambda^{n-1} + \cdots + p_{n-1}^{(m)}]e^{-\lambda \tau_m} = 0,
\]

(2.5)

where \(\tau_j > 0 (j = 1, 2, \ldots, m)\) and \(p_k^{(j)} (j = 0, 1, 2, \ldots, m; k = 1, 2, \ldots, n)\) are constants. **As** \((\tau_1, \tau_2, \ldots, \tau_m)\) **vary, the sum of orders of the zeros of** \(P(\lambda, e^{-\lambda \tau_1}, \ldots, e^{-\lambda \tau_m})\) **on the open right half plane can change, and only a zero appears on or crosses the imaginary axis.**

When \(\tau = 0\), Eq. (2.6) has the form:

\[
\lambda^3 + (A_2 + B_2) \lambda^2 + (A_1 + B_1) \lambda + A_0 + B_0 = 0.
\]

(2.6)

By the Routh-Hurwitz criterion, all the roots of Eq. (2.6) have negative real parts if and only if:

\[
A_2 + B_2 > 0, A_0 + B_0 > 0, (A_2 + B_2)(A_1 + B_1) > A_0 + B_0,
\]

(H1)

Therefore, the equilibrium point is stable when the condition (H1) is satisfied.

According to the Hopf bifurcation theory [29], let \(\lambda = \pm i \omega\) be a root of the Eq. (2.4). Then we can obtain:

\[
-\omega^3 i - A_2 \omega^2 + A_1 \omega i + A_0 + (-B_2 \omega^2 + B_1 \omega i + B_0)e^{-\omega \tau_1} = 0.
\]

(2.7)

Separating the real and imaginary parts, we have

\[
\begin{align*}
(B_0 - B_2 \omega^2) \cos \omega \tau + B_1 \omega \sin \omega \tau &= A_2 \omega^2 - A_0, \\
B_1 \omega \cos \omega \tau - (B_0 - B_2 \omega^2) \sin \omega \tau &= \omega^3 - A_1 \omega.
\end{align*}
\]

(2.8)

Adding the squares of both sides, we get:

\[
(B_0 - B_2 \omega^2)^2 + (B_1 \omega)^2 = (A_2 \omega^2 - A_0)^2 + (\omega^3 - A_1 \omega)^2.
\]
which is equivalent to
\[\omega^6 + p\omega^4 + q\omega^2 + r = 0, \]
(2.9)
where
\[p = A_2^2 - B_2^2 - 2A_1, \quad q = A_1^2 - 2A_0A_2 + 2B_0B_2 - B_1^2, \quad r = A_0^2 - B_0^2. \]

Denoting \(z = \omega^2 \), then Eq. (2.9) becomes
\[z^3 + pz^2 + qz + r = 0. \]
(2.10)

Let
\[h(z) = z^3 + pz^2 + qz + r. \]
(2.11)

Since \(\lim_{t \to +\infty} h(z) = +\infty \) and \(h(0) = r = A_0^2 - B_0^2 \), we assume that
\[\Delta = p^2 - 3q > 0, \quad z^* = \frac{-p \pm \sqrt{\Delta}}{3} > 0, \quad h(z^*) \leq 0. \]
(\(H^2 \))

Suppose that Eq. (2.11) has two positive roots \(z_1 \) and \(z_2 \). Then Eq. (2.9) has two positive roots \(\omega_k = \sqrt{z_k}, k = 1, 2 \). The corresponding critical value of time delay \(\tau_k^{(j)} \) is
\[\tau_k^{(j)} = \frac{1}{\omega_k} \arccos \left\{ \frac{(A_2\omega_k^2 - A_0)(B_0 - B_2\omega_k^2) + B_1\omega_k(\omega_k^2 - A_1\omega_k)}{(B_0 - B_2\omega_k^2)^2 + (B_1\omega_k)^2} \right\} + 2j\pi, \]
(2.12)
where \(k = 1, 2; \ j = 0, 1, 2, \cdots \).

Lemma 2. \[29\] If the conditions \((H1)\) and \((H2)\) hold, the following cross-sectional conditions are available.
\[\frac{d(Re(\lambda(t)))}{d\tau} \neq 0. \]
(2.13)

Let \(\lambda(\tau) \) into Eq.(2.4) and derive \(\tau \), it follows that
\[\frac{d\lambda}{d\tau} = \frac{3\lambda^2 + 2A_2\lambda + A_1 + (2B_2\lambda + B_1)e^{-\lambda\tau}}{\lambda(B_2\lambda^2 + B_1\lambda + B_0)} - \frac{\tau}{\lambda}, \]
(2.14)
Then
\[\left\{ \frac{d(Re(\lambda(\tau)))}{d\tau} \right\}_{\tau = \tau_k^{(j)}}^{-1} = Re \left\{ \frac{3\lambda^2 + 2A_2\lambda + A_1 + (2B_2\lambda + B_1)}{\lambda(B_2\lambda^2 + B_1\lambda + B_0)} \right\}_{\tau = \tau_k^{(j)}} \]
(2.15)
where

\[M_1 = (A_1 - 3\omega_k^2)\cos\omega_k\tau_k^{(j)} - 2A_2\omega_k\sin\omega_k\tau_k^{(j)} + B_1, \]
\[M_2 = 2A_2\omega_k\cos\omega_k\tau_k^{(j)} + (A_1 - 3\omega_k^2)\sin\omega_k\tau_k^{(j)} + 2B_2\omega_k, \]
\[N_1 = -B_1\omega_k^2, N_2 = \omega_k(A_0 - B_2\omega_k^2). \]

Assume that the following condition holds

\[M_1N_1 + M_2N_2 \neq 0. \] (H3)

Based on the above analysis, we obtain the following theorem.

Theorem 1. For system (2.2), then Eq. (2.9) has two positive roots \(\omega_1^0 \) and \(\omega_2^0 \), the corresponding critical values of time delay are \(\tau_1^0, \tau_2^0 \).

1. If \(\tau \in (\tau_1^0, \tau_2^0) \), the equilibrium \(S \) is asymptotically stable.
2. If \(\tau \in [0, \tau_1^0) \cup (\tau_2^0, +\infty) \), the equilibrium \(S \) is unstable. Furthermore, when \(\tau = \tau_1^0, \tau_2^0 \), the system (2.2) undergoes a Hopf bifurcation at the equilibrium \(S \).

3 Dynamic Analysis of the Model

In this section, to verify and demonstrate the effectiveness and the feasibility of the presented control method, the simulation results have been performed. When \(a_1 = 0.065, a_2 = 0.035, a_3 = 0.065, a_4 = 0.04, b_1 = 0.5, b_2 = 0.088, b_3 = 0.06, b_4 = 0.07, c_1 = 0.468, c_2 = 0.06, c_3 = 0.001, \) and \(M = 10 \), system (2.1) has five equilibrium points: \(E_0, E_1, E_2, E_3, \) and \(E_4 \). We just study the stability of the equilibrium point \(E_1(0.1383, 0.6807, 0.7388) \), the other four equilibrium points can be similarly discussed. We take \(k = -0.1 \). Then we consider the following system:

\[
\begin{align*}
\dot{x} &= 0.025x + 0.35y - 0.065yz \\
\dot{y} &= 0.5x(1 - x/10) - 0.088y + 0.01z - 0.07x - 0.1[y(t) - y(t - \tau)] \\
\dot{z} &= 0.468xy - 0.06z + 0.001(y - x)
\end{align*}
\] (3.1)

It is not difficult to verify that the conditions (H1)-(H3) hold. For \(j = 0 \), we can get \(\omega_1^0 = 0.25634, \tau_1^0 = 8.14583; \omega_2^0 = 0.14392, \tau_2^0 = 33.17992 \).

From Theorem 1, we know that the system is still chaotic when the delay \(\tau = 0 \). Fig 1. shows the chaotic attractor.

When \(\tau \) is changed from 0 to \(\tau_1^0 \), the chaotic attractor of the system disappears and the period solution appears (Fig 2). Chaos first is changed to limit cycle when \(\tau = 2 \) (Fig 2(a)), and then the limit cycle becomes a cycle when \(\tau = 4 \) (Fig 2(b)).

The equilibrium point \(S \) is stable for \(\tau \in (\tau_1^0, \tau_2^0) \), which is illustrated in Fig 3. Fig 3 shows the stability of the equilibrium point \(S \) with time delay for the values of the parameters. When the values of parameters are \(\tau = 14, \tau = 25, \) Fig 3(a) and Fig 3(b) shows the stability of the equilibrium point \(S \).

The numerical simulations show that when \(\tau > \tau_2^0 \), the bifurcating periodic solution disappear gradually and chaos occurs again finally in Fig 4. As is shown in the picture, when \(\tau = 46 \) the system is periodic (Fig 4(a)), and when \(\tau = 53 \) the system 3.1 loses its stability and a Hopf bifurcation occurs (Fig 4(b)).
Fig. 1. A chaotic attractor of the REP system for $\tau = 0$.

Fig. 2. Phase portrait of system (3.1) in 2-D and 3-D spaces for different time delays.

(a) Chaotic trajectory when $\tau = 2$.

(b) Periodic trajectory when $\tau = 4$.
(c) Stable trajectory when $\tau = 14$.

(d) Stable trajectory when $\tau = 25$.

Fig. 3. Time series and 3-D phase portrait of system (3.1) for different time delays.

(e) Periodic trajectory when $\tau = 46$.

(f) Bifurcating periodic trajectory when $\tau = 58$.

Fig. 4. Phase portrait of system (3.1) in 2-D and 3-D spaces for different time delays.
Therefore, the government should consider the impact of output in the previous period on the current economic growth rate, and make corresponding adjustments. The appropriate intervention and regulation by the government can promote the steady development of the economy to a certain extent.

4 CONCLUSIONS
In this paper, we study the new REP system at hopf bifurcation occurs and the stability of equilibrium. We determine the appropriate range of time delay τ and feedback strength k through some theorems. Our theoretical results and numerical simulations show that the time delay can control the chaotic phenomenon of the system (2.1). As the delay further increases, numerical simulations show that the periodic solution disappears and the chaotic attractor reappears. In real life, the government can take appropriate measures to regulate the economy and stabilize the economy.

ACKNOWLEDGMENT
The research is supported by the National Natural Science Foundation of China [No. 71673116] and the Natural Science Foundation of Jiangsu Province [No. SBK2015021674].

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES

